PhysicsLAB

AP Physics B
Review: Momentum, Energy, Springs, SHM, Torque, Center of Mass, Angular Momentum


Web Resouces

Textbook Assignment Solutions

** IP restricted

** Set #6: Work and Energy
   MC page 312 #1, 5, 8, 10, 12, 14, 16, 17

** Set #7: Work and Energy (Princeton Rev)
   pg 69-70 #1-10 all

** Set #8: Springs
   pg 349 MC #11,12,13
   pg 350 #37,38,40

** Set #9: Momentum and Impulse
    pg 118 MC #1,4,8-12,15-17,19,20

** Set #10: Momentum and Energy (Princeton Rev)
    pg 87-88 MC #1-7,9,10

Set #11: SHM
    pg 436 MC #11
    pg 437 Problems #5,6,8,17,18,22

Set #12: Simple Pendulums
    pg 437-8 Problems #23, 25, 26, 37

** Set #13: Springs and SHM (Princeton Rev)
    pg 161-162 #1-7 all

Set #14: Torque and Rotational Equilibrium
    pg 201 #31,33,37,39, 60

p = mv T = 2p squareroot.gif (935 bytes)(m/k)
Ft = Dmv T = 2p squareroot.gif (935 bytes)(L/g)
Smvbefore = Smvafter pendulum: h = L - L cos q
F = kx t = FL^
PEe = ½kx2 SHM: y = A sin (2pft)
kparallel = k1 + k2 w = 2pf
kseries = (1/k1 + 1/k2) -1 ac = v2 / r
amax = v2 / A
W = fs cos q amax = kA/m
Power = W/t = Fv v = 2pr/T
vmax = 2pA/T = 2pAf
KE = ½mv2 T = 1/f
projectiles: H | V chart vmax = x squareroot.gif (935 bytes)(k/m)
horizontally: a = 0 and R = vHt L = Iw
vertically: a = -g  plus the 5 kinematics equations v = rw
PEg = mgh KErot = ½Iw2
springs: slope of F vs x impulse
area under F vs x momentum
4 conditions for SHM area under F vs t
2 conditions for linear equilibrium slope of mv vs t
rotational equilibrium conservation of linear momentum
torque conservation of energy
moment arm elastic collisions
moment of inertia inelastic collisions
conservation of angular momentum ballistic pendulum



Copyright © 1997-2024
Catharine H. Colwell
All rights reserved.

PhysicsLAB

Mainland High School
Daytona Beach, FL 32114